
International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 445
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

PRIVACY MANAGER FOR DATA

SHARING IN THE CLOUD

SHAHNA FATHIMA S , S M NANDHAGOPAL

Abstract-CLOUD computing presents a new way to supplement the current consumption and delivery model for IT services based

on the Internet, by providing for dynamically scalable and often virtualized resources as a service over the Internet. Cloud

Information Accountability (CIA) framework, based on the notion of information accountability. Unlike privacy protection technologies
which are built on the hide-it-or-lose-it perspective, information accountability focuses on keeping the data usage transparent and
track able. Our proposed CIA framework provides end-to-end accountability in a highly distributed fashion. One of the main

innovative features of the CIA framework lies in its ability of maintaining lightweight and powerful accountability that combines
aspects of access control, usage control and authentication. By means of the CIA, data owners can track not only whether or not the
service-level agreements are being honored, but also enforce access and usage control rules as needed. Associated with the

accountability feature, we also develop two distinct modes for auditing: push mode and pull mode. The push mode refers to logs
being periodically sent to the data owner or stakeholder while the pull mode refers to an alternative approach whereby the user (or
another authorized party) can retrieve the logs as needed.

Keywords -Accountability, Auditing

1. INTRODUCTION

Cloud computing enables highly scalable

services to be easily consumed over the Internet on

an as-needed basis. A major feature of the cloud

services is that users’ data are usually processed

remotely in unknown machines that users do not

own or operate. CLOUD computing presents a

new way to supplement the current consumption

and delivery model for IT services based on the

Internet, by providing for dynamically scalable

and often virtualized resources as a service over

the Internet.

a.Accountability

While enjoying the convenience brought by

this new emerging technology, users’ fears of

losing control of their own data (particularly,

financial and health data) can become a significant

barrier to the wide adoption of cloud services. To

address this problem, in this paper, we propose a

novel highly decentralized information

accountability framework to keep track of the

actual usage of the users’ data in the cloud.

We propose an object-centered approach that

enables enclosing our logging mechanism together

with users’ data and policies. We leverage the JAR

programmable capabilities to both create a

dynamic and traveling object, and to ensure that

any access to users’ data will trigger authentication

and automated logging local to the JARs. To

strengthen user’s control, we also provide

distributed auditing mechanisms.

Cloud Information Accountability (CIA)

framework, based on the notion of information

accountability. Unlike privacy protection

technologies which are built on the hide-it-or-lose-

it perspective, information accountability focuses

on keeping the data usage transparent and track

able. Our proposed CIA framework provides end-

to-end accountability in a highly distributed

fashion.

2. RELATED WORK

a) Decentralized trust management

The most basic example of this is

authorization to create a slice, a network of virtual

machines, and to deploy a wide-area network

service in it. Once users have been authorized to

create slices and deploy services, we then need to

monitor resource usage in each slice to ensure that

resources are not being misused.

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 446
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

b)Auditing accountability

Our system consists of a group of

communicating agents which create and share data

and an authorization authority which may audit

agents. The creation of data, as well as the

communication between agents, is assumed to

leave some evidence and hence is observable (from

the perspective of the authorization authority). As

we do not continuously monitor agents, the

internal computations of agents are not considered

to be observable. However, when auditing an

agent, the data and policies currently stored by an

agent become visible to the authorization

authority. Thus, the model of an agent consists of

storage, (unobservable) internal computation and

(observable) actions such as communication.

c) Privacy protection

Privacy concerns arise whenever sensitive

data is outsourced to the cloud. By using

encryption, the cloud server (i.e. its administrator)

is prevented from learning content in the

outsourced databases. The new access control file

can now be distributed over the Encryption

Proxies. An Encryption Proxy accepts a new

XACML file on the condition: the file is signed by

two (or more) editors and all their signatures are

good. If the file is not proper, or correctly signed,

the system rejects the new file and falls back to the

current rights (for availability reasons).

d) Theory of accountability and audit

We describe an operational model of

accountability based systems. Honest and

dishonest principals are described as agents in a

distributed system where the communication

model guarantees point-to-point integrity and

authenticity. Auditors and other trusted agents

(such as trusted third parties) are also modeled

internally as agents. Behaviors of all agents are

described as processes in process algebra with

discrete time. Auditor implement ability is

ensured by forcing auditor behavior to be

completely determined by the messages that it

receives.

3. EXISTING SYSTEM

Cloud computing enables highly scalable

services to be easily consumed over the Internet on

an as-needed basis. A major feature of the cloud

services is that users’ data are usually processed

remotely in unknown machines that users do not

own or operate. While enjoying the convenience

brought by this new emerging technology, users’

fears of losing control of their own data

(particularly, financial and health data) can become

a significant barrier to the wide adoption of cloud

services.

While enjoying the convenience brought

by this new technology, users also start worrying

about losing control of their own data. The data

processed on clouds are often outsourced, leading

to a number of issues related to accountability,

including the handling of personally identifiable

information. Such fears are becoming a significant

barrier to the wide adoption of cloud services.

Conventional access control approaches

developed for closed domains such as databases

and operating systems, or approaches using a

centralized server in distributed environments, are

not suitable, due to the following features

characterizing cloud environments. First, data

handling can be outsourced by the direct cloud

service provider (CSP) to other entities in the cloud

and theses entities can also delegate the tasks to

others, and so on. Second, entities are allowed to

join and leave the cloud in a flexible manner. As a

result, data handling in the cloud goes through a

complex and dynamic hierarchical service chain

which does not exist in conventional

environments.

4.PROPOSED SYSTEM

One of the main innovative features of the

CIA framework lies in its ability of maintaining

lightweight and powerful accountability that

combines aspects of access control, usage control

and authentication. By means of the CIA, data

owners can track not only whether or not the

service-level agreements are being honored, but

also enforce access and usage control rules as

needed. Associated with the accountability feature,

we also develop two distinct modes for auditing:

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 447
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

push mode and pull mode. The push mode refers

to logs being periodically sent to the data owner or

stakeholder while the pull mode refers to an

alternative approach whereby the user (or another

authorized party) can retrieve the logs as needed.

The design of the CIA framework presents

substantial challenges, including uniquely

identifying CSPs, ensuring the reliability of the log,

adapting to a highly decentralized infrastructure,

etc. Our basic approach toward addressing these

issues is to leverage and extend the programmable

capability of JAR (Java ARchives) files to

automatically log the usage of the users’ data by

any entity in the cloud. Users will send their data

along with any policies such as access control

policies and logging policies that they want to

enforce, enclosed in JAR files, to cloud service

providers.

Any access to the data will trigger an

automated and authenticated logging mechanism

local to the JARs. We refer to this type of

enforcement as “strong binding” since the policies

and the logging mechanism travel with the data.

This strong binding exists even when copies of the

JARs are created; thus, the user will have control

over his data at any location. Such decentralized

logging mechanism meets the dynamic nature of

the cloud but also imposes challenges on ensuring

the integrity of the logging. To cope with this

issue, we provide the JARs with a central point of

contact which forms a link between them and the

user. It records the error correction information

sent by the JARs, which allows it to monitor the

loss of any logs from any of the JARs. Moreover, if

a JAR is not able to contact its central point, any

access to its enclosed data will be denied.

We propose a novel automatic and

enforceable logging mechanism in the cloud. To

our knowledge, this is the first time a systematic

approach to data accountability through the novel

usage of JAR files is proposed. . Our proposed

architecture is platform independent and highly

decentralized, in that it does not require any

dedicated authentication or storage system in

place. We go beyond traditional access control in

that we provide a certain degree of usage control

for the protected data after these are delivered to

the receiver. . We conduct experiments on a real

cloud testbed. The results demonstrate the

efficiency, scalability, and granularity of our

approach. We also provide a detailed security

analysis and discuss the reliability and strength of

our architecture.

5. System Model

The overall CIA framework, combining

data, users, logger and harmonizer is sketched in.

At the beginning, each user creates a pair of public

and private keys based on Identity-Based

Encryption. This IBE scheme is a Weil-pairing-

based IBE scheme, which protects us against one of

the most prevalent attacks to our architecture.

Using the generated key, the user will create a

logger component which is a JAR file, to store its

data items.

 Figure 4.1.1 CIA framework

The JAR file includes a set of simple access

control rules specifying whether and how the

cloud servers and possibly other data stakeholders

(users, companies) are authorized to access the

content itself. Then, he sends the JAR file to the

cloud service provider that he subscribes to. To

authenticate the CSP to the JAR, we use Open SSL

based certificates, wherein a trusted certificate

authority certifies the CSP. In the event that the

access is requested by a user, we employ SAML-

based authentication, wherein a trusted identity

provider issues certificates verifying the user’s

identity based on his username.

Once the authentication succeeds, the

service provider (or the user) will be allowed to

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 448
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

access the data enclosed in the JAR. Depending on

the configuration settings defined at the time of

creation, the JAR will provide usage control

associated with logging, or will provide only

logging functionality. As for the logging, each time

there is an access to the data; the JAR will

automatically generate a log record, encrypt it

using the public key distributed by the data owner,

and store it along with the data. The encryption of

the log file prevents unauthorized changes to the

file by attackers.

The data owner could opt to reuse the

same key pair for all JARs or create different key

pairs for separate JARs. Using separate keys can

enhance the security (detailed discussion is in

Section 7) without introducing any overhead

except in the initialization phase. In addition, some

error correction information will be sent to the log

harmonizer to handle possible log file corruption.

To ensure trustworthiness of the logs, each record

is signed by the entity accessing the content.

Further, individual records are hashed together to

create a chain structure, able to quickly detect

possible errors or missing records. The encrypted

log files can later be decrypted and their integrity

verified. They can be accessed by the data owner

or other authorized stakeholders at any time for

auditing purposes with the aid of the log

harmonizer.

5.1 Jar Usage

The main responsibility of the outer JAR is

to handle authentication of entities which want to

access the data stored in the JAR file. In our

context, the data owners may not know the exact

CSPs that are going to handle the data. Hence,

authentication is specified according to the servers’

functionality (which we assume to be known

through a lookup service), rather than the server’s

URL or identity. For example, a policy may state

that Server X is allowed to download the data if it

is a storage server. As discussed below, the outer

JAR may also have the access control functionality

to enforce the data owner’s requirements, specified

as Java policies, on the usage of the data.

 Figure 4.2.1 JAR usage

A Java policy specifies which permissions

are available for a particular piece of code in a Java

application environment. The permissions

expressed in the Java policy are in terms of File

System Permissions. However, the data owner can

specify the permissions in user-centric terms as

opposed to the usual code-centric security offered

by Java, using Java Authentication and

Authorization Services. Moreover, the outer JAR is

also in charge of selecting the correct inner JAR

according to the identity of the entity who requests

the data.
5.1.1 Cloud storage

Cloud Storage is a model of networked

computer data storage where data is stored on

multiple virtual servers, generally hosted by third

parties, rather than being hosted on dedicated

servers. Hosting companies operate large data

centers; and people who require their data to be

hosted buy or lease storage capacity from them

and use it for their storage needs. The data center

operators, in the background, virtualize the

resources according to the requirements of the

customer and expose them as virtual servers,

which the customers can themselves manage.

Physically, the resource may span across multiple

servers.

5.1.2Cloud information
accountability

Work conducts automated logging and

distributed auditing of relevant access performed

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 449
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

by any entity, carried out at any point of time at

any cloud service provider. It has two major

components: logger and log harmonizer. There are

two major components of the CIA, the first being

the logger, and the second being the log

harmonizer. The logger is the component which is

strongly coupled with the user’s data, so that it is

downloaded when the data are accessed, and is

copied whenever the data are copied. It handles a

particular instance or copy of the user’s data and is

responsible for logging access to that instance or

copy. The log harmonizer forms the central

component which allows the user access to the log

files.

The logger is strongly coupled with user’s

data (either single or multiple data items). Its main

tasks include automatically logging access to data

items that it contains, encrypting the log record

using the public key of the content owner, and

periodically sending them to the log harmonizer. It

may also be configured to ensure that access and

usage control policies associated with the data are

honored.

The logger requires only minimal support

from the server (e.g., a valid Java virtual machine

installed) in order to be deployed. The tight

coupling between data and logger, results in a

highly distributed logging system, therefore

meeting our first design requirement. Furthermore,

since the logger does not need to be installed on

any system or require any special support from the

server, it is not very intrusive in its actions, thus

satisfying our fifth requirement. Finally, the logger

is also responsible for generating the error

correction information for each log record and

sends the same to the log harmonizer. The error

correction information combined with the

encryption and authentication mechanism

provides a robust and reliable recovery

mechanism, therefore meeting the third

requirement. The log harmonizer is responsible for

auditing.

Being the trusted component, the log

harmonizer generates the master key. It holds on to

the decryption key for the IBE key pair, as it is

responsible for decrypting the logs. Alternatively,

the decryption can be carried out on the client end

if the path between the log harmonizer and the

client is not trusted. In this case, the harmonizer

sends the key to the client in a secure key

exchange.

It supports two auditing strategies: push

and pull. Under the push strategy, the log file is

pushed back to the data owner periodically in an

automated fashion. The pull mode is an on-

demand approach, whereby the log file is obtained

by the data owner as often as requested. These two

modes allow us to satisfy the aforementioned

fourth design requirement. In case there exist

multiple loggers for the same set of data items, the

log harmonizer will merge log records from them

before sending back to the data owner. The log

harmonizer is also responsible for handling log file

corruption. In addition, the log harmonizer can

itself carry out logging in addition to auditing.

Separating the logging and auditing functions

improves the performance. The logger and the log

harmonizer are both implemented as lightweight

and portable JAR files. The JAR file

implementation provides automatic logging

functions, which meets the second design

requirement.

5.1.3 Data flow
The overall CIA framework, combining data, users,

logger and harmonizer is sketched in. At the

beginning, each user creates a pair of public and

private keys based on Identity-Based Encryption.

This IBE scheme is a Weil-pairing-based IBE

scheme, which protects us against one of the most

prevalent attacks to our architecture. Using the

generated key, the user will create a logger

component which is a JAR file, to store its data

items. The JAR file includes a set of simple access

control rules specifying whether and how the

cloud servers, and possibly other data stakeholders

(users, companies) are authorized to access the

content itself. Then, he sends the JAR file to the

cloud service provider that he subscribes to.

5.1.4 Automated logging mechanism

The main responsibility of the outer JAR is

to handle authentication of entities which want to

access the data stored in the JAR file. In our

context, the data owners may not know the exact

CSPs that are going to handle the data. Hence,

authentication is specified according to the servers’

functionality (which we assume to be known

International Journal of Scientific & Engineering Research, Volume 4, Issue 4, April-2013 450
ISSN 2229-5518

IJSER © 2013

http://www.ijser.org

through a lookup service), rather than the server’s

URL or identity.

6. CONCLUSION
A major feature of the cloud services is

that users’ data are usually processed remotely in

unknown machines that users do not own or

operate. While enjoying the

convenience brought by this new emerging

technology, users’ fears of losing control of their

own data (particularly, financial and health data)

can become a significant barrier to the wide

adoption of cloud services. To address this

problem, in this paper, we propose a novel highly

decentralized information accountability

framework to keep track of the actual usage of the

users’ data in the cloud.

 We proposed innovative approaches for

automatically logging any access to the data in the

cloud together with an auditing mechanism. Our

approach allows the data

owner to not only audit his content but also

enforce strong back-end protection if needed.

Moreover, one of the main features of our work is

that it enables the data owner to audit even those

copies of its data that were made without his

knowledge.

7.FUTURE ENHANCEMENT

In the future, we would like to support a

variety of security policies, like indexing policies

for text files, usage control for executables, and

generic accountability and provenance controls.

8.REFERENCES

1. Chun and A.C. Bavier, (2004)

“Decentralized Trust Management and

Accountability in Federated Systems,”

Proc. Ann. Hawaii Int’l Conf. System

Sciences (HICSS).

2. Corin, S. Etalle, J.I. den Hartog, G.

Lenzini, and I. Staicu, (2005) “A Logic

for Auditing Accountability in

Decentralized Systems,” Proc. IFIP TC1

WG1.7 Workshop Formal Aspects in

Security and Trust, pp. 187-201.

3. Jagadeesan, A. Jeffrey, C. Pitcher, and J.

Riely, (2009) “Towards a Theory of

Accountability and Audit,” Proc. 14
th

European Conf. Research in Computer

Security (ESORICS), pp. 152-167.

4. Pearson and A. Charlesworth, (2009)

“Accountability as a Way Forward for

Privacy Protection in the Cloud,” Proc.

First Int’l Conf. Cloud Computing.

